Homework 6: Solutions to exercises not appearing in Pressley

Math 120A

- (4.2.14) Let $f(x)=x^{3}+3\left(y^{2}+z^{2}\right)^{2}-2$. Then the gradient of f is $\nabla f=\left(3 x^{2}, 12 y\left(y^{2}+\right.\right.$ $\left.z^{2}\right), 12 z\left(y^{2}+z^{2}\right)$), which is zero only when $x=y=z=0$. Since $(0,0,0)$ is not a solution to $f(x)=0$, we see that $\nabla f \neq 0$ at all solutions to $f(x)=0$, so the level set $\{(x, y, z): f(x)=0\}$ is a surface.
- (4.4.5) We have a parametrization of the torus

$$
\sigma(\theta, \phi)=((a+b \cos \theta) \cos \phi,(a+b \cos \theta) \sin \phi, b \sin \theta)
$$

whose restriction to $(0,2 \pi) \times(0,2 \pi)$ is a surface patch containing $\theta=\phi=\frac{\pi}{4}$. The partial derivatives of σ are

$$
\begin{aligned}
\sigma_{\theta} & =(-b \sin \theta \cos \phi,-b \sin \theta \sin \phi, b \cos \theta) \\
\sigma_{\phi} & =(-(a+b \cos \theta) \sin \phi,(a+b \cos \theta) \cos \phi, 0)
\end{aligned}
$$

At $\theta=\phi=\frac{\pi}{4}$, these vectors are

$$
\begin{aligned}
\sigma_{u} & =\left(\frac{-b}{2}, \frac{-b}{2}, \frac{b}{\sqrt{2}}\right)=\frac{b}{2}(-1,-1, \sqrt{2}) \\
\sigma_{v} & =\left(\frac{-a}{\sqrt{2}}-\frac{b}{2}, \frac{a}{\sqrt{2}}+\frac{b}{2}, 0\right)=\left(\frac{a}{\sqrt{2}}+\frac{b}{2}\right)(-1,1,0)
\end{aligned}
$$

Therefore the normal vector to the plane spanned by σ_{θ} and σ_{ϕ} is

$$
(-1,-1, \sqrt{2}) \times(-1,1,0)=(-\sqrt{2},-\sqrt{2},-2)=-\sqrt{2}(1,1, \sqrt{2})
$$

Ergo the tangent plane is $x+y+\sqrt{2} z=0$.

- (Question 3) A surface patch for \mathbb{R}^{2} is the identity map $\sigma_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \subseteq \mathbb{R}^{3}$ with $(x, y) \mapsto(x, y, 0)$. Then if σ is the parametrization of the torus from (4.2.5), we see that $\sigma^{-1} \circ f \circ \sigma_{1}(\phi, \theta)=(2 \pi x, 2 \pi y)$ wherever it is defined. The Jacobian of this map is $2 \pi I$ everywhere, where I is the 2×2 identity matrix, and in particular always invertible. Therefore $D_{\mathbf{p}} f$ is an invertible linear matrix everywhere, and we conclude that f is a local diffeomorphism.

